Recruitment order of cat abducens motoneurons and internuclear neurons.
نویسندگان
چکیده
Abducens neurons undergo a dose-dependent synaptic blockade (either disinhibition or complete blockade) when tetanus neurotoxin (TeNT) is injected into the lateral rectus muscle at either a low (0.5) or a high dose (5 ng/kg). We studied the firing pattern and recruitment order in abducens neurons both in control and after TeNT injection. The eye position threshold for recruitment of control abducens neurons was exponentially related to the eye position and velocity sensitivities. We also found a constancy of recruitment threshold for different eye movement modalities (spontaneous, optokinetic, and vestibular). Exponential relationships were found, as well, for eye velocity sensitivity during saccades and for position and velocity sensitivities during the vestibulo-ocular reflex. Likewise, inverse relationships were found between recruitment threshold or position sensitivity with the antidromic latency in control abducens neurons. These relationships, however, did not apply following TeNT treatment. Neuronal firing after TeNT appeared either disinhibited (low dose) or depressed (high dose), but the relationships between neuronal sensitivities and recruitment still applied. However, the pattern of recruitment shifted toward the treated side as more inputs were blocked by the low- and high-dose treatments, respectively. Nonetheless, although the recruitment-to-sensitivity relationships persisted under the TeNT synaptic blockade, we conclude that synaptic inputs are determinant for establishing the recruitment threshold and recruitment spacing of abducens motoneurons and internuclear neurons.
منابع مشابه
Expression of Trk receptors in the oculomotor system of the adult cat.
We examined the expression of the three Trk receptors for neurotrophins (TrkA, TrkB, and TrkC) in the extraocular motor nuclei of the adult cat by using antibodies directed against the full-Trk proteins in combination with horseradish peroxidase retrograde tracing. The three receptors were present in all neuronal populations investigated, including abducens motoneurons and internuclear neurons,...
متن کاملNeural organization from the superior colliculus to motoneurons in the horizontal oculomotor system of the cat.
The neural organization of the superior colliculus (SC) projection to horizontal ocular motoneurons was analyzed in anesthetized cats using intracellular recording and transneuronal labeling. Intracellular responses to SC stimulation were analyzed in lateral rectus (LR) and medial rectus (MR) motoneurons and internuclear neurons in the abducens nucleus (AINs). LR motoneurons and AINs received e...
متن کاملDischarge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus.
1. Single neurons in the abducens nucleus were recorded extracellularly in alert rhesus macaques trained to make a variety of eye movements. An abducens neurons was identified as a motoneuron (MN) if its action potentials triggered an averaged EMG potential in the lateral rectus muscle. Abducens internuclear neurons (INNs) that project to the oculomotor nucleus were identified by collision bloc...
متن کاملSimulated recruitment of medial rectus motoneurons by abducens internuclear neurons: synaptic specificity vs. intrinsic motoneuron properties.
Ocular motoneuron firing rate is linearly related to conjugate eye position with slope K above recruitment threshold theta. Within the population of ocular motoneurons K increases as theta increases. These differences in firing rate between motoneurons might be determined either by the intrinsic properties of the motoneurons, or by differences in synaptic input to them, or by a combination of t...
متن کاملThe extraocular motor nuclei: organization and functional neuroanatomy.
The organization of the motoneuron subgroups in the brainstem controlling each extraocular eye muscle is highly stable through the vertebrate species. The subgroups are topographically organized in the oculomotor nucleus (III) and are usually considered to form the final common pathway for eye muscle control. Eye muscles contain a unique type of slow non-twitch, fatigue-resistant muscle fiber, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2003